Application of Machine Learning for Prediction and Process Optimization—Case Study of Blush Defect in Plastic Injection Molding

نویسندگان

چکیده

Injection molding is one of the most important processes for mass production plastic parts. In recent years, many researchers have focused on predicting occurrence and intensity defects in injected molded parts, as well optimization process parameters to avoid such defects. One frequent manufactured parts blush, which usually occurs around gate location. this study, identify effective blush formation, eight design with effect probability influence defect been investigated. Using a combination experiments (DOE), finite element analysis (FEA), ANOVA, significant identified (runner diameter, holding pressure, flow rate, melt temperature). Furthermore, provide an efficient predictive model, machine learning methods basic artificial neural networks, their genetic algorithms, particle swarm applied performance analyzed. It was found that network (ANN), average accuracy error 1.3%, provides closest predictions FEA results. Additionally, were optimized using ANOVA algorithm, resulted reduction area.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finding efficient frontier of process parameters for plastic injection molding

Product quality for plastic injection molding process is highly related with the settings for its process parameters. Additionally, the product quality is not simply based on a single quality index, but multiple interrelated quality indices. To find the settings for the process parameters such that the multiple quality indices can be simultaneously optimized is becoming a research issue and ...

متن کامل

simulation and experimental studies for prediction mineral scale formation in oil field during mixing of injection and formation water

abstract: mineral scaling in oil and gas production equipment is one of the most important problem that occurs while water injection and it has been recognized to be a major operational problem. the incompatibility between injected and formation waters may result in inorganic scale precipitation in the equipment and reservoir and then reduction of oil production rate and water injection rate. ...

development and implementation of an optimized control strategy for induction machine in an electric vehicle

in the area of automotive engineering there is a tendency to more electrification of power train. in this work control of an induction machine for the application of electric vehicle is investigated. through the changing operating point of the machine, adapting the rotor magnetization current seems to be useful to increase the machines efficiency. in the literature there are many approaches wh...

15 صفحه اول

Optimization of Plastic Injection Molding Process by Combination of Artificial Neural Network and Genetic Algorithm

Injection molding is one of the most important and common plastic formation methods. Combination of modeling tools and optimization algorithms can be used in order to determine optimum process conditions for the injection molding of a special part. Because of the complication of the injection molding process and multiplicity of parameters and their interactive effects on one another, analytical...

متن کامل

application and construction of carbon paste modified electrodes developed for determination of metal ions in some real samples

ساخت الکترودهاِی اصلاح شده ِیکِی از چالشهاِی همِیشگِی در دانش شیمِی بوِیژه شیمِی تجزیه مِی باشد ،که با در نظر گرفتن سادگِی ساخت، کاربردی بودن و ارزان بودن روش مِی توان به باارزش بودن چنِین سنسورهاِی پِی برد.آنچه که در ادامه آورده شده به ساخت و کاربرد الکترودهاِی اصلاح شده با استفاده از نانو ذرات در اندازه گِیرِی ولتامترِی آهن وکادمِیم اشاره دارد. کار اول اختصاص دارد به ساخت الکترود خمِیر کربن اصلاح شده با لِیگاند داِ...

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied sciences

سال: 2023

ISSN: ['2076-3417']

DOI: https://doi.org/10.3390/app13042617